statistics_region.php 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177
  1. <?php
  2. /**
  3. * 地区统计分析模块
  4. *
  5. * 包含与地区相关的数据分析功能
  6. */
  7. require_once 'statistics_utils.php';
  8. /**
  9. * 获取客户国家分布
  10. *
  11. * @param mysqli $conn 数据库连接
  12. * @return mysqli_result 客户国家分布数据结果集
  13. */
  14. function getCustomerCountryDistribution($conn) {
  15. $sql = "SELECT
  16. c.countryName,
  17. COUNT(cu.id) as customer_count
  18. FROM customer cu
  19. JOIN country c ON cu.cs_country = c.id
  20. GROUP BY cu.cs_country
  21. ORDER BY customer_count DESC
  22. LIMIT 10";
  23. return $conn->query($sql);
  24. }
  25. /**
  26. * 获取不同地区的订单数量
  27. *
  28. * @param mysqli $conn 数据库连接
  29. * @param string $start_date 开始日期
  30. * @param string $end_date 结束日期
  31. * @return mysqli_result 地区订单数据结果集
  32. */
  33. function getOrdersByRegion($conn, $start_date, $end_date) {
  34. $sql = "SELECT
  35. c.countryName,
  36. COUNT(o.id) as order_count,
  37. SUM(o.total_amount) as total_amount,
  38. SUM(oi.quantity) as total_quantity
  39. FROM orders o
  40. JOIN customer cu ON o.customer_id = cu.id
  41. JOIN country c ON cu.cs_country = c.id
  42. LEFT JOIN order_items oi ON o.id = oi.order_id
  43. WHERE o.order_date BETWEEN ? AND ?
  44. GROUP BY cu.cs_country
  45. ORDER BY total_quantity DESC
  46. LIMIT 10";
  47. $stmt = $conn->prepare($sql);
  48. $stmt->bind_param("ss", $start_date, $end_date);
  49. $stmt->execute();
  50. return $stmt->get_result();
  51. }
  52. /**
  53. * 获取地区销售同比环比数据
  54. *
  55. * @param mysqli $conn 数据库连接
  56. * @param string $current_start 当前周期开始日期
  57. * @param string $current_end 当前周期结束日期
  58. * @return array 地区销售同比环比数据
  59. */
  60. function getRegionSalesComparison($conn, $current_start, $current_end) {
  61. // 计算上一个相同时长的周期
  62. $current_start_date = new DateTime($current_start);
  63. $current_end_date = new DateTime($current_end);
  64. $interval = $current_start_date->diff($current_end_date);
  65. $prev_end_date = clone $current_start_date;
  66. $prev_end_date->modify('-1 day');
  67. $prev_start_date = clone $prev_end_date;
  68. $prev_start_date->sub($interval);
  69. $prev_start = $prev_start_date->format('Y-m-d');
  70. $prev_end = $prev_end_date->format('Y-m-d') . ' 23:59:59';
  71. // 获取当前周期数据
  72. $sql = "SELECT
  73. c.countryName,
  74. COUNT(o.id) as order_count,
  75. SUM(o.total_amount) as total_amount
  76. FROM orders o
  77. JOIN customer cu ON o.customer_id = cu.id
  78. JOIN country c ON cu.cs_country = c.id
  79. WHERE o.order_date BETWEEN ? AND ?
  80. GROUP BY cu.cs_country
  81. ORDER BY total_amount DESC
  82. LIMIT 5";
  83. $stmt = $conn->prepare($sql);
  84. $stmt->bind_param("ss", $current_start, $current_end);
  85. $stmt->execute();
  86. $current_result = $stmt->get_result();
  87. $current_data = [];
  88. while ($row = $current_result->fetch_assoc()) {
  89. $current_data[$row['countryName']] = [
  90. 'order_count' => $row['order_count'],
  91. 'total_amount' => $row['total_amount']
  92. ];
  93. }
  94. // 获取上一个周期数据
  95. $stmt = $conn->prepare($sql);
  96. $stmt->bind_param("ss", $prev_start, $prev_end);
  97. $stmt->execute();
  98. $prev_result = $stmt->get_result();
  99. $prev_data = [];
  100. while ($row = $prev_result->fetch_assoc()) {
  101. $prev_data[$row['countryName']] = [
  102. 'order_count' => $row['order_count'],
  103. 'total_amount' => $row['total_amount']
  104. ];
  105. }
  106. // 计算同比变化
  107. $comparison_data = [];
  108. foreach ($current_data as $country => $current) {
  109. $prev = $prev_data[$country] ?? ['order_count' => 0, 'total_amount' => 0];
  110. $order_growth = $prev['order_count'] > 0
  111. ? (($current['order_count'] - $prev['order_count']) / $prev['order_count']) * 100
  112. : 100;
  113. $amount_growth = $prev['total_amount'] > 0
  114. ? (($current['total_amount'] - $prev['total_amount']) / $prev['total_amount']) * 100
  115. : 100;
  116. $comparison_data[] = [
  117. 'countryName' => $country,
  118. 'current_orders' => $current['order_count'],
  119. 'prev_orders' => $prev['order_count'],
  120. 'order_growth' => $order_growth,
  121. 'current_amount' => $current['total_amount'],
  122. 'prev_amount' => $prev['total_amount'],
  123. 'amount_growth' => $amount_growth
  124. ];
  125. }
  126. return $comparison_data;
  127. }
  128. /**
  129. * 渲染客户国家分布图
  130. *
  131. * @param array $country_labels 国家标签
  132. * @param array $country_data 国家数据
  133. * @return void
  134. */
  135. function renderCustomerCountryDistributionChart($country_labels, $country_data) {
  136. ?>
  137. <div class="chart-container">
  138. <div class="chart-header">
  139. <h2 class="chart-title">客户国家分布</h2>
  140. </div>
  141. <canvas id="countryDistributionChart"></canvas>
  142. </div>
  143. <script>
  144. // 客户国家分布图
  145. var countryDistributionCtx = document.getElementById('countryDistributionChart').getContext('2d');
  146. var countryDistributionChart = new Chart(countryDistributionCtx, {
  147. type: 'pie',
  148. data: {
  149. labels: <?php echo json_encode($country_labels); ?>,
  150. datasets: [{
  151. data: <?php echo json_encode($country_data); ?>,
  152. backgroundColor: [
  153. 'rgba(255, 99, 132, 0.7)',
  154. 'rgba(54, 162, 235, 0.7)',
  155. 'rgba(255, 206, 86, 0.7)',
  156. 'rgba(75, 192, 192, 0.7)',
  157. 'rgba(153, 102, 255, 0.7)',
  158. 'rgba(255, 159, 64, 0.7)',
  159. 'rgba(199, 199, 199, 0.7)',
  160. 'rgba(83, 102, 255, 0.7)',
  161. 'rgba(40, 159, 64, 0.7)',
  162. 'rgba(210, 199, 199, 0.7)'
  163. ],
  164. borderWidth: 1
  165. }]
  166. },
  167. options: {
  168. responsive: true,
  169. plugins: {
  170. legend: {
  171. position: 'right',
  172. }
  173. }
  174. }
  175. });
  176. </script>
  177. <?php
  178. }
  179. /**
  180. * 渲染地区订单分析图
  181. *
  182. * @param array $region_labels 地区标签
  183. * @param array $region_orders 地区订单数量
  184. * @param array $region_quantities 地区产品数量
  185. * @return void
  186. */
  187. function renderRegionOrdersChart($region_labels, $region_orders, $region_quantities) {
  188. ?>
  189. <div class="chart-container">
  190. <div class="chart-header">
  191. <h2 class="chart-title">地区订单分析</h2>
  192. </div>
  193. <canvas id="regionOrdersChart"></canvas>
  194. </div>
  195. <script>
  196. // 地区订单分析图
  197. var regionOrdersCtx = document.getElementById('regionOrdersChart').getContext('2d');
  198. var regionOrdersChart = new Chart(regionOrdersCtx, {
  199. type: 'bar',
  200. data: {
  201. labels: <?php echo json_encode($region_labels); ?>,
  202. datasets: [
  203. {
  204. label: '订单数量',
  205. data: <?php echo json_encode($region_orders); ?>,
  206. backgroundColor: 'rgba(54, 162, 235, 0.6)',
  207. borderColor: 'rgba(54, 162, 235, 1)',
  208. borderWidth: 1,
  209. yAxisID: 'y-orders'
  210. },
  211. {
  212. label: '产品订购数量',
  213. data: <?php echo json_encode($region_quantities); ?>,
  214. backgroundColor: 'rgba(255, 99, 132, 0.6)',
  215. borderColor: 'rgba(255, 99, 132, 1)',
  216. borderWidth: 1,
  217. yAxisID: 'y-quantity'
  218. }
  219. ]
  220. },
  221. options: {
  222. responsive: true,
  223. scales: {
  224. x: {
  225. title: {
  226. display: true,
  227. text: '地区'
  228. }
  229. },
  230. 'y-orders': {
  231. type: 'linear',
  232. position: 'left',
  233. title: {
  234. display: true,
  235. text: '订单数量'
  236. },
  237. beginAtZero: true
  238. },
  239. 'y-quantity': {
  240. type: 'linear',
  241. position: 'right',
  242. title: {
  243. display: true,
  244. text: '产品订购数量'
  245. },
  246. beginAtZero: true,
  247. grid: {
  248. drawOnChartArea: false
  249. }
  250. }
  251. }
  252. }
  253. });
  254. </script>
  255. <?php
  256. }
  257. /**
  258. * 渲染地区销售同比环比表格
  259. *
  260. * @param array $comparison_data 比较数据
  261. * @return void
  262. */
  263. function renderRegionSalesComparisonTable($comparison_data) {
  264. ?>
  265. <div class="chart-container">
  266. <div class="chart-header">
  267. <h2 class="chart-title">地区销售同比分析</h2>
  268. </div>
  269. <table class="data-table">
  270. <thead>
  271. <tr>
  272. <th>国家/地区</th>
  273. <th>当前订单数</th>
  274. <th>上期订单数</th>
  275. <th>订单增长率</th>
  276. <th>当前销售额</th>
  277. <th>上期销售额</th>
  278. <th>销售额增长率</th>
  279. </tr>
  280. </thead>
  281. <tbody>
  282. <?php foreach ($comparison_data as $row): ?>
  283. <tr>
  284. <td><?php echo htmlspecialchars($row['countryName']); ?></td>
  285. <td><?php echo number_format($row['current_orders']); ?></td>
  286. <td><?php echo number_format($row['prev_orders']); ?></td>
  287. <td class="<?php echo $row['order_growth'] >= 0 ? 'positive' : 'negative'; ?>">
  288. <?php echo number_format($row['order_growth'], 2); ?>%
  289. </td>
  290. <td>¥<?php echo number_format($row['current_amount'], 2); ?></td>
  291. <td>¥<?php echo number_format($row['prev_amount'], 2); ?></td>
  292. <td class="<?php echo $row['amount_growth'] >= 0 ? 'positive' : 'negative'; ?>">
  293. <?php echo number_format($row['amount_growth'], 2); ?>%
  294. </td>
  295. </tr>
  296. <?php endforeach; ?>
  297. </tbody>
  298. </table>
  299. </div>
  300. <?php
  301. }
  302. /**
  303. * 获取地区总销售额及增长率
  304. *
  305. * @param mysqli $conn 数据库连接
  306. * @param string $start_date 开始日期
  307. * @param string $end_date 结束日期
  308. * @return array 总销售额和增长率
  309. */
  310. function getRegionTotalSales($conn, $start_date, $end_date) {
  311. // 计算当前周期销售额
  312. $sql = "SELECT SUM(o.total_amount) as total_amount
  313. FROM orders o
  314. WHERE o.order_date BETWEEN ? AND ?";
  315. $stmt = $conn->prepare($sql);
  316. $stmt->bind_param("ss", $start_date, $end_date);
  317. $stmt->execute();
  318. $result = $stmt->get_result();
  319. $row = $result->fetch_assoc();
  320. $current_amount = $row['total_amount'] ?? 0;
  321. // 计算上一个相同时长的周期
  322. $current_start_date = new DateTime($start_date);
  323. $current_end_date = new DateTime($end_date);
  324. $interval = $current_start_date->diff($current_end_date);
  325. $prev_end_date = clone $current_start_date;
  326. $prev_end_date->modify('-1 day');
  327. $prev_start_date = clone $prev_end_date;
  328. $prev_start_date->sub($interval);
  329. $prev_start = $prev_start_date->format('Y-m-d');
  330. $prev_end = $prev_end_date->format('Y-m-d') . ' 23:59:59';
  331. // 获取上一周期销售额
  332. $stmt = $conn->prepare($sql);
  333. $stmt->bind_param("ss", $prev_start, $prev_end);
  334. $stmt->execute();
  335. $result = $stmt->get_result();
  336. $row = $result->fetch_assoc();
  337. $prev_amount = $row['total_amount'] ?? 0;
  338. // 计算增长率
  339. $growth = 0;
  340. if ($prev_amount > 0) {
  341. $growth = (($current_amount - $prev_amount) / $prev_amount) * 100;
  342. }
  343. return [
  344. 'total_amount' => $current_amount,
  345. 'growth' => $growth
  346. ];
  347. }
  348. /**
  349. * 获取活跃国家数
  350. *
  351. * @param mysqli $conn 数据库连接
  352. * @param string $start_date 开始日期
  353. * @param string $end_date 结束日期
  354. * @return array 活跃国家信息
  355. */
  356. function getActiveCountries($conn, $start_date, $end_date) {
  357. $sql = "SELECT COUNT(DISTINCT cu.cs_country) as country_count
  358. FROM orders o
  359. JOIN customer cu ON o.customer_id = cu.id
  360. WHERE o.order_date BETWEEN ? AND ?";
  361. $stmt = $conn->prepare($sql);
  362. $stmt->bind_param("ss", $start_date, $end_date);
  363. $stmt->execute();
  364. $result = $stmt->get_result();
  365. $row = $result->fetch_assoc();
  366. return [
  367. 'count' => $row['country_count'] ?? 0
  368. ];
  369. }
  370. /**
  371. * 获取各地区平均订单金额
  372. *
  373. * @param mysqli $conn 数据库连接
  374. * @param string $start_date 开始日期
  375. * @param string $end_date 结束日期
  376. * @return array 各地区平均订单金额数据
  377. */
  378. function getAverageOrderByRegion($conn, $start_date, $end_date) {
  379. $sql = "SELECT
  380. c.countryName,
  381. AVG(o.total_amount) as avg_amount,
  382. COUNT(o.id) as order_count
  383. FROM orders o
  384. JOIN customer cu ON o.customer_id = cu.id
  385. JOIN country c ON cu.cs_country = c.id
  386. WHERE o.order_date BETWEEN ? AND ?
  387. GROUP BY cu.cs_country
  388. HAVING order_count >= 5
  389. ORDER BY avg_amount DESC
  390. LIMIT 10";
  391. $stmt = $conn->prepare($sql);
  392. $stmt->bind_param("ss", $start_date, $end_date);
  393. $stmt->execute();
  394. $result = $stmt->get_result();
  395. $regions = [];
  396. $total_avg = 0;
  397. $total_orders = 0;
  398. while ($row = $result->fetch_assoc()) {
  399. $regions[] = [
  400. 'countryName' => $row['countryName'],
  401. 'avg_amount' => $row['avg_amount'],
  402. 'order_count' => $row['order_count']
  403. ];
  404. $total_avg += $row['avg_amount'] * $row['order_count'];
  405. $total_orders += $row['order_count'];
  406. }
  407. // 计算全球平均订单金额
  408. $global_avg = $total_orders > 0 ? $total_avg / $total_orders : 0;
  409. return [
  410. 'regions' => $regions,
  411. 'global_avg' => $global_avg
  412. ];
  413. }
  414. /**
  415. * 获取各地区产品类别偏好
  416. *
  417. * @param mysqli $conn 数据库连接
  418. * @param string $start_date 开始日期
  419. * @param string $end_date 结束日期
  420. * @return array 各地区产品类别偏好数据
  421. */
  422. function getRegionCategoryPreferences($conn, $start_date, $end_date) {
  423. $sql = "SELECT
  424. c.countryName,
  425. pc.name as category_name,
  426. SUM(oi.quantity) as total_quantity
  427. FROM orders o
  428. JOIN customer cu ON o.customer_id = cu.id
  429. JOIN country c ON cu.cs_country = c.id
  430. JOIN order_items oi ON o.id = oi.order_id
  431. JOIN products p ON oi.product_id = p.id
  432. JOIN product_categories pc ON p.category_id = pc.id
  433. WHERE o.order_date BETWEEN ? AND ?
  434. GROUP BY cu.cs_country, p.category_id
  435. ORDER BY c.countryName, total_quantity DESC";
  436. $stmt = $conn->prepare($sql);
  437. $stmt->bind_param("ss", $start_date, $end_date);
  438. $stmt->execute();
  439. $result = $stmt->get_result();
  440. $preferences = [];
  441. $current_country = '';
  442. $country_data = [];
  443. while ($row = $result->fetch_assoc()) {
  444. if ($current_country != $row['countryName']) {
  445. if (!empty($current_country)) {
  446. $preferences[$current_country] = $country_data;
  447. }
  448. $current_country = $row['countryName'];
  449. $country_data = [];
  450. }
  451. $country_data[] = [
  452. 'category' => $row['category_name'],
  453. 'quantity' => $row['total_quantity']
  454. ];
  455. }
  456. // 添加最后一个国家的数据
  457. if (!empty($current_country)) {
  458. $preferences[$current_country] = $country_data;
  459. }
  460. // 只保留前5个主要市场
  461. $top_markets = array_slice(array_keys($preferences), 0, 5);
  462. $filtered_preferences = [];
  463. foreach ($top_markets as $market) {
  464. $filtered_preferences[$market] = array_slice($preferences[$market], 0, 5);
  465. }
  466. return $filtered_preferences;
  467. }
  468. /**
  469. * 获取地区销售增长趋势
  470. *
  471. * @param mysqli $conn 数据库连接
  472. * @param string $start_date 开始日期
  473. * @param string $end_date 结束日期
  474. * @param string $period 时间粒度 (day/week/month)
  475. * @return array 地区销售增长趋势数据
  476. */
  477. function getRegionGrowthTrends($conn, $start_date, $end_date, $period = 'month') {
  478. $period_format = getPeriodFormat($period);
  479. $sql = "SELECT
  480. c.countryName,
  481. DATE_FORMAT(o.order_date, ?) as time_period,
  482. SUM(o.total_amount) as total_amount
  483. FROM orders o
  484. JOIN customer cu ON o.customer_id = cu.id
  485. JOIN country c ON cu.cs_country = c.id
  486. WHERE o.order_date BETWEEN ? AND ?
  487. GROUP BY cu.cs_country, time_period
  488. ORDER BY c.countryName, time_period";
  489. $stmt = $conn->prepare($sql);
  490. $stmt->bind_param("sss", $period_format, $start_date, $end_date);
  491. $stmt->execute();
  492. $result = $stmt->get_result();
  493. $trends = [];
  494. $time_periods = [];
  495. while ($row = $result->fetch_assoc()) {
  496. if (!in_array($row['time_period'], $time_periods)) {
  497. $time_periods[] = $row['time_period'];
  498. }
  499. if (!isset($trends[$row['countryName']])) {
  500. $trends[$row['countryName']] = [];
  501. }
  502. $trends[$row['countryName']][$row['time_period']] = $row['total_amount'];
  503. }
  504. // 只保留前5个主要市场
  505. $top_markets = array_slice(array_keys($trends), 0, 5);
  506. $filtered_trends = [];
  507. foreach ($top_markets as $market) {
  508. $filtered_trends[$market] = $trends[$market];
  509. }
  510. return [
  511. 'time_periods' => $time_periods,
  512. 'trends' => $filtered_trends
  513. ];
  514. }
  515. /**
  516. * 获取地区季节性销售分析
  517. *
  518. * @param mysqli $conn 数据库连接
  519. * @return array 地区季节性销售分析数据
  520. */
  521. function getRegionSeasonalAnalysis($conn) {
  522. $sql = "SELECT
  523. c.countryName,
  524. MONTH(o.order_date) as month,
  525. SUM(o.total_amount) as total_amount
  526. FROM orders o
  527. JOIN customer cu ON o.customer_id = cu.id
  528. JOIN country c ON cu.cs_country = c.id
  529. WHERE o.order_date >= DATE_SUB(CURDATE(), INTERVAL 2 YEAR)
  530. GROUP BY cu.cs_country, month
  531. ORDER BY c.countryName, month";
  532. $result = $conn->query($sql);
  533. $seasonal = [];
  534. $months = range(1, 12);
  535. while ($row = $result->fetch_assoc()) {
  536. if (!isset($seasonal[$row['countryName']])) {
  537. $seasonal[$row['countryName']] = array_fill(1, 12, 0);
  538. }
  539. $seasonal[$row['countryName']][$row['month']] += $row['total_amount'];
  540. }
  541. // 只保留前5个主要市场
  542. $top_markets = array_slice(array_keys($seasonal), 0, 5);
  543. $filtered_seasonal = [];
  544. foreach ($top_markets as $market) {
  545. $filtered_seasonal[$market] = array_values($seasonal[$market]);
  546. }
  547. return [
  548. 'months' => ['一月', '二月', '三月', '四月', '五月', '六月', '七月', '八月', '九月', '十月', '十一月', '十二月'],
  549. 'data' => $filtered_seasonal
  550. ];
  551. }
  552. /**
  553. * 获取地区销售预测数据
  554. *
  555. * @param mysqli $conn 数据库连接
  556. * @param string $start_date 开始日期
  557. * @param string $end_date 结束日期
  558. * @return array 地区销售预测数据
  559. */
  560. function getRegionSalesForecast($conn, $start_date, $end_date) {
  561. // 获取过去12个月的销售数据作为基础
  562. $sql = "SELECT
  563. c.countryName,
  564. MONTH(o.order_date) as month,
  565. YEAR(o.order_date) as year,
  566. SUM(o.total_amount) as total_amount
  567. FROM orders o
  568. JOIN customer cu ON o.customer_id = cu.id
  569. JOIN country c ON cu.cs_country = c.id
  570. WHERE o.order_date >= DATE_SUB(CURDATE(), INTERVAL 12 MONTH)
  571. GROUP BY cu.cs_country, year, month
  572. ORDER BY c.countryName, year, month";
  573. $result = $conn->query($sql);
  574. $historical = [];
  575. while ($row = $result->fetch_assoc()) {
  576. $period = $row['year'] . '-' . str_pad($row['month'], 2, '0', STR_PAD_LEFT);
  577. if (!isset($historical[$row['countryName']])) {
  578. $historical[$row['countryName']] = [];
  579. }
  580. $historical[$row['countryName']][$period] = $row['total_amount'];
  581. }
  582. // 生成未来6个月的预测
  583. $forecast = [];
  584. $periods = [];
  585. $current_month = (int)date('m');
  586. $current_year = (int)date('Y');
  587. // 收集所有历史数据点时间
  588. $all_periods = [];
  589. foreach ($historical as $country => $data) {
  590. foreach (array_keys($data) as $period) {
  591. $all_periods[$period] = true;
  592. }
  593. }
  594. $all_periods = array_keys($all_periods);
  595. sort($all_periods);
  596. // 生成未来6个月的预测点
  597. $future_periods = [];
  598. for ($i = 1; $i <= 6; $i++) {
  599. $forecast_month = ($current_month + $i) % 12;
  600. $forecast_month = $forecast_month == 0 ? 12 : $forecast_month;
  601. $forecast_year = $current_year + floor(($current_month + $i - 1) / 12);
  602. $period = $forecast_year . '-' . str_pad($forecast_month, 2, '0', STR_PAD_LEFT);
  603. $future_periods[] = $period;
  604. }
  605. // 合并历史和预测时间点
  606. $all_chart_periods = array_merge($all_periods, $future_periods);
  607. // 只选取主要的5个市场做预测
  608. $top_markets = array_slice(array_keys($historical), 0, 5);
  609. $forecast_data = [];
  610. foreach ($top_markets as $market) {
  611. $forecast_data[$market] = [];
  612. // 为每个市场生成简单的预测
  613. // 这里使用简单的线性增长预测
  614. // 实际应用中可以采用更复杂的时间序列预测算法
  615. // 计算过去几个月的平均增长率
  616. $growth_rate = 0.05; // 默认月度增长率为5%
  617. if (count($historical[$market]) >= 2) {
  618. $values = array_values($historical[$market]);
  619. $start_val = array_shift($values);
  620. $end_val = array_pop($values);
  621. if ($start_val > 0) {
  622. $periods_count = count($historical[$market]) - 1;
  623. $total_growth = ($end_val / $start_val) - 1;
  624. $growth_rate = pow(1 + $total_growth, 1 / $periods_count) - 1;
  625. // 限制增长率在合理范围内
  626. $growth_rate = max(-0.2, min(0.2, $growth_rate));
  627. }
  628. }
  629. // 对于历史数据,直接使用实际值
  630. foreach ($all_periods as $period) {
  631. $forecast_data[$market][$period] = [
  632. 'value' => $historical[$market][$period] ?? null,
  633. 'is_forecast' => false
  634. ];
  635. }
  636. // 对于预测数据,基于最后一个历史数据点和增长率计算
  637. $last_period = end($all_periods);
  638. $last_value = $historical[$market][$last_period] ?? array_values($historical[$market])[count($historical[$market])-1];
  639. foreach ($future_periods as $i => $period) {
  640. $forecast_value = $last_value * pow(1 + $growth_rate, $i + 1);
  641. $forecast_data[$market][$period] = [
  642. 'value' => $forecast_value,
  643. 'is_forecast' => true
  644. ];
  645. }
  646. }
  647. return [
  648. 'periods' => $all_chart_periods,
  649. 'forecast' => $forecast_data
  650. ];
  651. }
  652. /**
  653. * 渲染平均订单金额分析图表
  654. *
  655. * @param array $region_data 地区平均订单金额数据
  656. * @return void
  657. */
  658. function renderAverageOrderByRegionChart($region_data) {
  659. $region_labels = [];
  660. $avg_amounts = [];
  661. $order_counts = [];
  662. foreach ($region_data as $region) {
  663. $region_labels[] = $region['countryName'];
  664. $avg_amounts[] = $region['avg_amount'];
  665. $order_counts[] = $region['order_count'];
  666. }
  667. ?>
  668. <div class="chart-header">
  669. <h2 class="chart-title">地区平均订单金额分析</h2>
  670. </div>
  671. <canvas id="avgOrderChart"></canvas>
  672. <script>
  673. // 地区平均订单金额分析图
  674. var avgOrderCtx = document.getElementById('avgOrderChart').getContext('2d');
  675. var avgOrderChart = new Chart(avgOrderCtx, {
  676. type: 'bar',
  677. data: {
  678. labels: <?php echo json_encode($region_labels); ?>,
  679. datasets: [
  680. {
  681. label: '平均订单金额',
  682. data: <?php echo json_encode($avg_amounts); ?>,
  683. backgroundColor: 'rgba(75, 192, 192, 0.6)',
  684. borderColor: 'rgba(75, 192, 192, 1)',
  685. borderWidth: 1,
  686. yAxisID: 'y-amount'
  687. },
  688. {
  689. type: 'line',
  690. label: '订单数量',
  691. data: <?php echo json_encode($order_counts); ?>,
  692. backgroundColor: 'rgba(255, 159, 64, 0.6)',
  693. borderColor: 'rgba(255, 159, 64, 1)',
  694. borderWidth: 2,
  695. fill: false,
  696. yAxisID: 'y-count'
  697. }
  698. ]
  699. },
  700. options: {
  701. responsive: true,
  702. scales: {
  703. x: {
  704. title: {
  705. display: true,
  706. text: '地区'
  707. }
  708. },
  709. 'y-amount': {
  710. type: 'linear',
  711. position: 'left',
  712. title: {
  713. display: true,
  714. text: '平均订单金额'
  715. }
  716. },
  717. 'y-count': {
  718. type: 'linear',
  719. position: 'right',
  720. title: {
  721. display: true,
  722. text: '订单数量'
  723. },
  724. grid: {
  725. drawOnChartArea: false
  726. }
  727. }
  728. }
  729. }
  730. });
  731. </script>
  732. <?php
  733. }
  734. /**
  735. * 渲染地区产品类别偏好图表
  736. *
  737. * @param array $preferences 地区产品类别偏好数据
  738. * @return void
  739. */
  740. function renderRegionCategoryPreferencesChart($preferences) {
  741. ?>
  742. <div class="chart-header">
  743. <h2 class="chart-title">各地区产品类别偏好</h2>
  744. </div>
  745. <div class="grid-row">
  746. <?php foreach ($preferences as $country => $categories): ?>
  747. <?php
  748. $category_labels = [];
  749. $category_data = [];
  750. foreach ($categories as $cat) {
  751. $category_labels[] = $cat['category'];
  752. $category_data[] = $cat['quantity'];
  753. }
  754. ?>
  755. <div class="grid-column">
  756. <div class="subchart-container">
  757. <h3 class="subchart-title"><?php echo $country; ?></h3>
  758. <canvas id="categoryChart<?php echo md5($country); ?>"></canvas>
  759. </div>
  760. </div>
  761. <script>
  762. // <?php echo $country; ?> 产品类别偏好
  763. var categoryCtx<?php echo md5($country); ?> = document.getElementById('categoryChart<?php echo md5($country); ?>').getContext('2d');
  764. var categoryChart<?php echo md5($country); ?> = new Chart(categoryCtx<?php echo md5($country); ?>, {
  765. type: 'doughnut',
  766. data: {
  767. labels: <?php echo json_encode($category_labels); ?>,
  768. datasets: [{
  769. data: <?php echo json_encode($category_data); ?>,
  770. backgroundColor: [
  771. 'rgba(255, 99, 132, 0.7)',
  772. 'rgba(54, 162, 235, 0.7)',
  773. 'rgba(255, 206, 86, 0.7)',
  774. 'rgba(75, 192, 192, 0.7)',
  775. 'rgba(153, 102, 255, 0.7)'
  776. ],
  777. borderWidth: 1
  778. }]
  779. },
  780. options: {
  781. responsive: true,
  782. plugins: {
  783. legend: {
  784. position: 'right',
  785. }
  786. }
  787. }
  788. });
  789. </script>
  790. <?php endforeach; ?>
  791. </div>
  792. <?php
  793. }
  794. /**
  795. * 渲染地区销售增长趋势图表
  796. *
  797. * @param array $growth_data 地区销售增长趋势数据
  798. * @return void
  799. */
  800. function renderRegionGrowthTrendsChart($growth_data) {
  801. $time_periods = $growth_data['time_periods'];
  802. $trends = $growth_data['trends'];
  803. $datasets = [];
  804. $colors = [
  805. ['rgba(255, 99, 132, 0.6)', 'rgba(255, 99, 132, 1)'],
  806. ['rgba(54, 162, 235, 0.6)', 'rgba(54, 162, 235, 1)'],
  807. ['rgba(255, 206, 86, 0.6)', 'rgba(255, 206, 86, 1)'],
  808. ['rgba(75, 192, 192, 0.6)', 'rgba(75, 192, 192, 1)'],
  809. ['rgba(153, 102, 255, 0.6)', 'rgba(153, 102, 255, 1)']
  810. ];
  811. $i = 0;
  812. foreach ($trends as $country => $data) {
  813. $dataset = [
  814. 'label' => $country,
  815. 'data' => [],
  816. 'backgroundColor' => $colors[$i % count($colors)][0],
  817. 'borderColor' => $colors[$i % count($colors)][1],
  818. 'borderWidth' => 2,
  819. 'fill' => false,
  820. 'tension' => 0.1
  821. ];
  822. foreach ($time_periods as $period) {
  823. $dataset['data'][] = $data[$period] ?? null;
  824. }
  825. $datasets[] = $dataset;
  826. $i++;
  827. }
  828. ?>
  829. <div class="chart-header">
  830. <h2 class="chart-title">地区销售增长趋势</h2>
  831. </div>
  832. <canvas id="growthTrendsChart"></canvas>
  833. <script>
  834. // 地区销售增长趋势图
  835. var growthTrendsCtx = document.getElementById('growthTrendsChart').getContext('2d');
  836. var growthTrendsChart = new Chart(growthTrendsCtx, {
  837. type: 'line',
  838. data: {
  839. labels: <?php echo json_encode($time_periods); ?>,
  840. datasets: <?php echo json_encode($datasets); ?>
  841. },
  842. options: {
  843. responsive: true,
  844. scales: {
  845. x: {
  846. title: {
  847. display: true,
  848. text: '时间段'
  849. }
  850. },
  851. y: {
  852. title: {
  853. display: true,
  854. text: '销售额'
  855. }
  856. }
  857. }
  858. }
  859. });
  860. </script>
  861. <?php
  862. }
  863. /**
  864. * 渲染地区季节性分析图表
  865. *
  866. * @param array $seasonal_data 地区季节性分析数据
  867. * @return void
  868. */
  869. function renderRegionSeasonalAnalysisChart($seasonal_data) {
  870. $months = $seasonal_data['months'];
  871. $data = $seasonal_data['data'];
  872. $datasets = [];
  873. $colors = [
  874. ['rgba(255, 99, 132, 0.6)', 'rgba(255, 99, 132, 1)'],
  875. ['rgba(54, 162, 235, 0.6)', 'rgba(54, 162, 235, 1)'],
  876. ['rgba(255, 206, 86, 0.6)', 'rgba(255, 206, 86, 1)'],
  877. ['rgba(75, 192, 192, 0.6)', 'rgba(75, 192, 192, 1)'],
  878. ['rgba(153, 102, 255, 0.6)', 'rgba(153, 102, 255, 1)']
  879. ];
  880. $i = 0;
  881. foreach ($data as $country => $values) {
  882. $datasets[] = [
  883. 'label' => $country,
  884. 'data' => $values,
  885. 'backgroundColor' => $colors[$i % count($colors)][0],
  886. 'borderColor' => $colors[$i % count($colors)][1],
  887. 'borderWidth' => 2,
  888. 'fill' => false,
  889. 'tension' => 0.1
  890. ];
  891. $i++;
  892. }
  893. ?>
  894. <div class="chart-header">
  895. <h2 class="chart-title">地区季节性销售分析</h2>
  896. </div>
  897. <canvas id="seasonalAnalysisChart"></canvas>
  898. <script>
  899. // 地区季节性销售分析图
  900. var seasonalCtx = document.getElementById('seasonalAnalysisChart').getContext('2d');
  901. var seasonalChart = new Chart(seasonalCtx, {
  902. type: 'line',
  903. data: {
  904. labels: <?php echo json_encode($months); ?>,
  905. datasets: <?php echo json_encode($datasets); ?>
  906. },
  907. options: {
  908. responsive: true,
  909. scales: {
  910. x: {
  911. title: {
  912. display: true,
  913. text: '月份'
  914. }
  915. },
  916. y: {
  917. title: {
  918. display: true,
  919. text: '销售额'
  920. }
  921. }
  922. }
  923. }
  924. });
  925. </script>
  926. <?php
  927. }
  928. /**
  929. * 渲染地区销售预测图表
  930. *
  931. * @param array $forecast_data 地区销售预测数据
  932. * @return void
  933. */
  934. function renderRegionSalesForecastChart($forecast_data) {
  935. $periods = $forecast_data['periods'];
  936. $forecast = $forecast_data['forecast'];
  937. $datasets = [];
  938. $colors = [
  939. ['rgba(255, 99, 132, 0.6)', 'rgba(255, 99, 132, 1)'],
  940. ['rgba(54, 162, 235, 0.6)', 'rgba(54, 162, 235, 1)'],
  941. ['rgba(255, 206, 86, 0.6)', 'rgba(255, 206, 86, 1)'],
  942. ['rgba(75, 192, 192, 0.6)', 'rgba(75, 192, 192, 1)'],
  943. ['rgba(153, 102, 255, 0.6)', 'rgba(153, 102, 255, 1)']
  944. ];
  945. $i = 0;
  946. foreach ($forecast as $country => $data) {
  947. $historical_data = [];
  948. $forecast_data = [];
  949. foreach ($periods as $period) {
  950. if (isset($data[$period])) {
  951. if ($data[$period]['is_forecast']) {
  952. $historical_data[] = null;
  953. $forecast_data[] = $data[$period]['value'];
  954. } else {
  955. $historical_data[] = $data[$period]['value'];
  956. $forecast_data[] = null;
  957. }
  958. } else {
  959. $historical_data[] = null;
  960. $forecast_data[] = null;
  961. }
  962. }
  963. $datasets[] = [
  964. 'label' => $country . ' (历史)',
  965. 'data' => $historical_data,
  966. 'backgroundColor' => $colors[$i % count($colors)][0],
  967. 'borderColor' => $colors[$i % count($colors)][1],
  968. 'borderWidth' => 2,
  969. 'fill' => false
  970. ];
  971. $datasets[] = [
  972. 'label' => $country . ' (预测)',
  973. 'data' => $forecast_data,
  974. 'backgroundColor' => $colors[$i % count($colors)][0],
  975. 'borderColor' => $colors[$i % count($colors)][1],
  976. 'borderWidth' => 2,
  977. 'borderDash' => [5, 5],
  978. 'fill' => false
  979. ];
  980. $i++;
  981. }
  982. ?>
  983. <div class="chart-header">
  984. <h2 class="chart-title">地区销售预测 (未来6个月)</h2>
  985. </div>
  986. <canvas id="forecastChart"></canvas>
  987. <script>
  988. // 地区销售预测图
  989. var forecastCtx = document.getElementById('forecastChart').getContext('2d');
  990. var forecastChart = new Chart(forecastCtx, {
  991. type: 'line',
  992. data: {
  993. labels: <?php echo json_encode($periods); ?>,
  994. datasets: <?php echo json_encode($datasets); ?>
  995. },
  996. options: {
  997. responsive: true,
  998. scales: {
  999. x: {
  1000. title: {
  1001. display: true,
  1002. text: '时间段'
  1003. }
  1004. },
  1005. y: {
  1006. title: {
  1007. display: true,
  1008. text: '销售额'
  1009. }
  1010. }
  1011. },
  1012. plugins: {
  1013. tooltip: {
  1014. callbacks: {
  1015. title: function(tooltipItems) {
  1016. return tooltipItems[0].label;
  1017. }
  1018. }
  1019. }
  1020. }
  1021. }
  1022. });
  1023. </script>
  1024. <?php
  1025. }
  1026. /**
  1027. * 渲染热门地区表格
  1028. *
  1029. * @param array $region_labels 地区标签
  1030. * @param array $region_order_counts 地区订单数量
  1031. * @param array $region_quantities 地区产品数量
  1032. * @param array $region_amounts 地区销售金额
  1033. * @return void
  1034. */
  1035. function renderTopRegionsTable($region_labels, $region_order_counts, $region_quantities, $region_amounts) {
  1036. ?>
  1037. <table class="data-table">
  1038. <thead>
  1039. <tr>
  1040. <th>排名</th>
  1041. <th>国家/地区</th>
  1042. <th>订单数</th>
  1043. <th>产品数量</th>
  1044. <th>销售金额</th>
  1045. <th>平均订单金额</th>
  1046. </tr>
  1047. </thead>
  1048. <tbody>
  1049. <?php for ($i = 0; $i < count($region_labels); $i++): ?>
  1050. <tr>
  1051. <td><?php echo $i + 1; ?></td>
  1052. <td><?php echo htmlspecialchars($region_labels[$i]); ?></td>
  1053. <td><?php echo number_format($region_order_counts[$i]); ?></td>
  1054. <td><?php echo number_format($region_quantities[$i]); ?></td>
  1055. <td>¥<?php echo number_format($region_amounts[$i], 2); ?></td>
  1056. <td>¥<?php echo number_format($region_order_counts[$i] > 0 ? $region_amounts[$i] / $region_order_counts[$i] : 0, 2); ?></td>
  1057. </tr>
  1058. <?php endfor; ?>
  1059. </tbody>
  1060. </table>
  1061. <?php
  1062. }